';

Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Zufallsvariablen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Eine Fertigungsanlage hat einen gleichbleibenden Ausschuss-Anteil von 0,5%. Mit welcher Wahrscheinlichkeit findet man unter 100 entnommenen Produktionseinheiten höchstens ein fehlerhaftes? Berechnen Sie die Lösung exakt sowie als Näherung durch die Poisson-Verteilung!

Nr. 4594
Lösungsweg

4 erreichbare Punkte

Gegeben sei eine stetige Zufallsvariable X, die im Intervall [0;6] gleichverteilt ist. Bestimmen Sie die Dichtefunktion f(x) im Bereich \(0 \leq x \leq 6\)

Nr. 4562
Lösungsweg

4 erreichbare Punkte

Sei X die Zufallsvariable "Augensumme dreier Würfel". Die Verteilungsfunktion F(x) von X gibt dann die Wahrscheinlichkeit an, dass eine Augensumme X gewürfelt wird, für welche gilt:

Nr. 4550
Lösungsweg

4 erreichbare Punkte

Wahr oder falsch: Der Erwartungswert gewichtet alle Werte einer Zufallsvariablen X gleich.

Nr. 4581
Lösungsweg

4 erreichbare Punkte

Auf einem Jahrmarkt wird ein Glücksspiel angeboten: Für einen Einsatz von 1 Euro werfen Sie drei faire Würfel gleichzeitig. Bei einer Augensumme von 3 oder 18 erhalten Sie jeweils 100 Euro, ansonsten ist der Einsatz weg. Welche Aussagen sind korrekt?

Nr. 4566
Lösungsweg

4 erreichbare Punkte

Die Varianz der Zufallsvariablen X = "Anzahl der Köpfe beim Wurf einer Münze" beträgt Var(X) = 0,25. Berechnen Sie daraus die Varianz der Zufallsvariablen Y = "Anzahl der Köpfe beim Wurf dreier Münzen"! (Annahme: Alle Münzen sind fair.)

Nr. 4585
Lösungsweg

4 erreichbare Punkte

Gegeben sei eine stetige Zufallsvariable X, die im Intervall [0;6] gleichverteilt ist. Bestimmen Sie die Wahrscheinlichkeit, dass X einen Wert zwischen 0,2 und 0,5 annimmt!

Nr. 4565
Lösungsweg

4 erreichbare Punkte

Der Erwartungswert der Zufallsvariablen X = "Anzahl der Köpfe beim Wurf einer Münze" beträgt E(X) = 0,5. Berechnen Sie daraus den Erwartungswert der Zufallsvariablen Y = "Anzahl der Köpfe beim Wurf dreier Münzen"! (Annahme: Alle Münzen sind fair.)

Nr. 4584
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News

Wussten Sie schon?

Sie können sich rechts oben einen kostenlosen Benutzer erstellen. Dann wird Ihr Lernfortschritt gespeichert, Sie können Tests zwischenspeichern und an Tutorien teilnehmen.