Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Zufallsvariablen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Bei einem Glücksspiel können Sie eine von drei Türen wählen.
Hinter einer Tür befinden sich 25 Goldmünzen, hinter einer 30 Goldmünzen, und hinter einer sind 45 Goldmünzen.
Berechnen Sie die Varianz für dieses Spiel.

Nr. 3741
Lösungsweg

4 erreichbare Punkte

Wahr oder falsch: Die Zufallsvariable X = "Augensumme dreier Würfel" ist stetig.

Nr. 4549
Lösungsweg

2 erreichbare Punkte

Ein Bus fährt pünktlich alle 15 Minuten. Sei X die Zufallsvariable, welche durch die Wartezeit in Minuten bestimmt wird, wenn man zufällig zur Haltestelle kommt. Wie lange wird man im Schnitt auf den Bus warten müssen?

Nr. 4574
Lösungsweg

4 erreichbare Punkte

Roulette: Beim Roulette gibt es 18 rote Felder, 18 schwarze Felder und die Null. Ein Spieler setzt auf rot. Rollt die Kugel auf rot, so erhält der Spieler einen Gewinn in der Höhe seines Einsatzes (und sein Einsatz bleibt ihm erhalten), andernfalls verliert er seinen Einsatz. Wie hoch ist der erwartete Gewinn, wenn der Spieler in hundert Runden 1 € setzt?

Nr. 3745
Lösungsweg

5 erreichbare Punkte

Der Erwartungswert der Zufallsvariablen X = "Anzahl der Köpfe beim Wurf einer Münze" beträgt E(X) = 0,5. Berechnen Sie daraus den Erwartungswert der Zufallsvariablen Y = "Anzahl der Köpfe beim Wurf dreier Münzen"! (Annahme: Alle Münzen sind fair.)

Nr. 4584
Lösungsweg

4 erreichbare Punkte

Sei X die Anzahl der Würfe mit einem fairen Würfel, bis zum ersten Mal eine Sechs geworfen wird. Welche Werte kann die Zufallsvariable X annehmen?

Nr. 4559
Lösungsweg

4 erreichbare Punkte

Ein Bus fährt pünktlich alle 15 Minuten. Sei X die Zufallsvariable, welche durch die Wartezeit in Minuten bestimmt wird, wenn man zufällig zur Bushaltestelle kommt. Wie ist dann die Wahrscheinlichkeitsdichte definiert?

Nr. 4571
Lösungsweg

4 erreichbare Punkte

Gegeben sei eine stetige Zufallsvariable X, die im Intervall [0;6] gleichverteilt ist. Bestimmen Sie die Wahrscheinlichkeit, dass X einen Wert zwischen 0,2 und 0,5 annimmt!

Nr. 4565
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News

Wussten Sie schon?

Wenn Sie einen Benutzer haben, vergessen Sie nicht, sich rechts oben anzumelden. Nur dann wird Ihr Lernfortschritt gespeichert.